
80D-A04 596 APPLYING AOA PROG3RAMNING SUPPORT ENVIRONMENT (APSE) 14
CONCEPTS FOR COMPUTER (U) RJR FORCE INST OF TECH
URIGHT-PATTERSON AFB ON SCHOOL OF SYST K M AUSTIN

UNCLASSIFIED, SEP 86 AFIT/GLX/ENC/86S-2 F/G 9/2 UL

EEEEEEEEEEEEEE
EEEEElhlEEEEEE
EEEIIEEIIEEEEE
EEEEEEllEEEllE
ElllEEEEEEEEEI
EEEEElllEEEEEE

~L 6

11111.1.25 11111J.4 O 1.6

6CROCOPY RESOLUTION TEST CHART
NATIONA RIIRFAU OF STANDARITS I%3-A

-W dV-

~OF

ENVIRONMENT (APSE) CONCEPTS FOR

COMPUTER INTEGRATED MANUFACTURING

SYSTEMS (CIMS) SOLUTIONS

THESIS

Kathleen M. Austin
Captain, USAF

AFIT/GLM/ENC/86S- 2

DTIC
p jD~TH~T~ [1 1 LECTE

Approved for pubLk DE 2 W
C-D Ic re. l DEC 2 1986

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

__2 AIR FORCE INSTITUTE OF TECHNOLOGY

Wright- Patterson Air Force Base, Ohio

6 9

AFIT/GLM/ENC/8 6 S -O

APPLYING ADA PROGRAMMING SUPPORT
ENVIRONMENT (APSE) CONCEPTS FOR
COMPUTER INTEGRATED MANUFACTURING

SYSTEMS (CIMS) SOLUTIONS

THESIS

Kathleen M. Austin
Captain, USAF

AFIT/GLM/ENC/86S- 2 DTIC
Ft-ECTE.
DEC 2 1986

B

Approved for public release; distribution unlimited

The contents of the document are technically accurate, and no
sensitive items, detrimental ideas, or deleterious information is
contained therein. Furthermore, the views expressed in the
document are those of the author and do not necessarily reflect
the views of the School of Systems and Logistics, the Air
University, the United States Air Force, or the Department of
Defense.

A-,cI

a..
+

L , : '

D !1

[;IS:% :J U V .,

AF IT/GLM/ENC / 86S- 2

APPLYING ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE)

CONCEPTS FOR COMPUTER INTEGRATED MANUFACTURING

SYSTEMS (CIMS) SOLUTIONS

-THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Logistics Management

Kathleen M. Austin, B.S.B.A.

Captain, USAF

September 1986

Approved for public release; distribution unlimited

Preface

The purpose of this research effort was to ccmpare

the concepts of Ada Programming Support Environments (ASPE)

and Computer Integrated Manufacturing Systems (CIMS) to

see if the similarities would justify applying APSE con-

cepts to help solve CIMS problems. There is an immediate

need for this kind of integrated, interdisciplinary

research because of the vast amounts of money the Department

of Defense is investing in each of the concepts.

Department of Defense funding is coming under

greater and greater scrutiny. It is time for us to examine

even more ways we can work smarter instead of harder.

Interdisciplinary research is one way we can work smarter.

Using the principals of the General Systems Theory that we

all learned during the Logistics Systems Overview course,

we should look to see if the research efforts we attempt

are actually re-inventions of the same conceptual wheel.

During my studies at AFIT, I took many additional

courses in the School of Engineering. Time and time again,

I was struck by the similarities of the Engineering School

courses to the Logistics School courses. The "language"

of the courses in each school was different, but the con-

cepts and the intent were the same. One of my criteria

for determining a thesis topic was to find an area from

'ii

V.

each school and integrate the two into a thesis with

"crossover" potential: understandable by professionals

from each school. Another of my criteria was to do mean-

ingful research, i.e., research that would contribute to

and extend the current body of knowledge. I found not

only a meaningful thesis topic with two areas of extreme

personal interest, but also an outstanding thesis advisor

with similar interdisciplinary interests.

A list of acronyms has been included to assist the

reader. This list immediately precedes the abstract and

Chapter I.

This thesis effort could not have been possible

without a great deal of help from others. I wish to thank

my daughters, Britt and Kirsten Peschke, for their patience

and understanding during the long months of this research

effort. Thank you, Professor Dan Reynolds for rejuvenating

my husband, so that he could keep me going. Phyllis

Reynolds, thank you for your superb typing support. I

also wish to thank Professor Karyl Adams for her extremely

valuable assistance and ideas. I am deeply indebted to my

thesis advisor, Maj Pat Lawlis, for her patience, knowledge,

interest, and support. Most of all, I would like to thank

my mother for her prayers and support and my husband, Dick

Peschke. Without him, none of this would have been pos-

sible. Thank you for always being there for me.

- Kathleen M. Austin

iii

Table of Contents
4.'

Page

Preface ii

List of Figures viii

i List of Tables ix

SList of Acronyms x

Abstract xii

I. Introduction 1

Background 2
Scope of the Thesis 7
Research Question 8
Research Objectives 8
Organization 8

II. Computer Integrated Manufacturing
Systems (CIMS) 11

Introduction 11CIMS Defined 12

CIMS Functions 13
CIMS Elements 15
CIMS Components 15

History of CIMS 16

1950s 16
1960s 16
1970s 17
1980s 18

The Integrated Computer Aided Manufacturing
(ICAM) Project 20

History of the ICAM Project 20
National Bureau of Standards (NBS)
Report............................ 21

Rport. .-. -. -. .. ., 21* 4. 4 -) 4iv

Page

Software Portability 22
Integratable Modules 23

Application Program Interfaces 23
Database Interfaces. 25
System Software Interfaces 25

Distributed Data Processing .. 26
Exchangeable Manufacturing Data 26

Summary....................27

III. Ada........................29

Introduction 29
Recognition of the Ned for aDoD
Standard Language 30
Development of DOD- 34
Ada Test and Validation 36
Ada Programming Support Environment
(APSE) Development...............37
APSE Requirements...............39

APSE Structure..............40

KAPSE.................40
MAPSE...................42
APSE.................42

APSE Portability Issues...........43
APSE Components 44

Database...............44
Interfaces...............45
Toolset................46

APSE Evaluation and Validation (E & V) . 48
Summary....................49

IV. Comparison of APSE and CIMS 50

Introduction.................50

APSE versus CIMS...............52

Objectives................52
Design Guidelines 52

Portability 53

V

Page

Additional Design Guidelines........54

Robustness..............54
Hardware Usage.............55

Pictorial Representations 56

APSE..................56
Cims..................59

Component Levels................63

Database..................63

APSE..................63
CIMS..................64

Interfaces.................65

APSE..................65
CIMS..................65

Toolset...................66

APSE..................66

CIMS..................67

Differences..................67

Summary.....................70

V. Conclusions and Recommendations 71

Conclusions...................71

Research Objective 1............71
Research Objective 2............71
Research Objective 3............72
Research Objective 4............72

Database................72
Interfaces..............72
Toolset.................72

Research Objective 5............73
Research Objective 6............74

Recommendations for Follow-on Research . 74

vi

Page

Appendix: Chronology of Ada and APSE

Requirements Documents.............76

Bibliography......................77

Vita...........................80

.vii

44

List of Figures

Figure Page

1-1. CIMS Framework...................5

2-1. ICAM Structure....................24

3-1. APSE Structure...................41

4-1. APSE Structure...................57

4-2. Adapted APSE Structure...............58

4-3. ICAD4 Structure...................60

4-4. Adapted ICAM Structure...............61

* viii

List of Tables

Table Page

1-1. Factory Automation Investments 3

3-1. DoD Directive 5000.31 Approved Languages 33

3-2. Languages Evaluated Against TINMAN 33

-i

ixix
t' ,%,"

'p.

List of Acronyms

ACM Association for Computing Machinery

AFIT Air Force Institute of Technology

AJPO Ada Joint Program Office

AML A Manufacturing Language

ANSI American National Standards Institute

APSE Ada Programming Support Environment

APT Automatically Programmed Tools

ARCADE AFIT Research Concept for an Ada Development
Environment

CAD Computer Aided Design

CAD/CAM Computer Aided Design and Computer Aided
Manufacturing

CAIS Common APSE Interface Set

CAM Computer Aided Manufacturing

CEC Commission of European Communities

CIMS Computer Integrated Manufacturing Systems

CNC Computer Numerically Controlled

COMPACT II Computer Programs for Automatically
Controlling Tools

COPICS Communications Oriented Production and

Inventory Control System

DARPA Defense Advanced Research Projects Agency

DBMS Database Management System

DNC Direct Numerical Control

DoD Department of Defense

x

DOD-I DoD Programming Language 1

DDR&E Director of Defense Research and Engineering

E & V Evaluation and Validation

HOL Higher Order Language

HOLWG Higher Order Language Working Group

ICAM Integrated Computer Aided Manufacturing

ISO International Standards Organization

KAPSE Kernal Ada Programming Support Environment

KIT KAPSE Interface Team

KITIA KAPSE Interface Team from Industry and
Academia

MAP Manufacturing Automation Protocol

MAPSE Minimal Ada Programming Support Environment

NATO North Atlantic Treaty Organization

NAVELEX Naval Electronics Systems Command

NBS National Bureau of Standards

NC Numerically Controlled

RTSM Run Time Support Monitor

SIGPLAN Special Interest Group of the ACM for
Programming Languages

x.

xi

Abstract

This thesis compares the concepts of Ada Program-

ming Support Environments (APSE) and Computer Integrated

Manufacturing Systems (CIMS) to see if they are similar

enough to apply APSE concepts for solving CIMS problems.

After establishing a discussion baseline for each of the

concepts, the objectives, design guidelines and pictorial

representations of an APSE and a CIMS are first compared.

Then the two concepts are compared at the database, inter-

faces and toolset level. The major differences between an

APSE and a CIMS are also identified. Finally, after estab-

lishing that similarities do exist between APSE and CIMS

concepts, recommendations are made for applying APSE con-

cepts for CIMS solutions that will contribute to achieving

Air Force as well as U.S. manufacturing goals.

xii

APPLYING ADA* PROGRAMMING SUPPORT ENVIRONMENT (APSE)

CONCEPTS FOR COMPUTER INTEGRATED MANUFACTURING

SYSTEMS (CIMS) SOLUTIONS

I. Introduction

The United States' market share in electronics has

slipped below 10 percent, less than a third of its share

in 1965. Additionally, steel production is down 35 percent

and the U.S. share of auto production has been cut in half.

In 1979, Japan could produce and ship a car to our country

*for $1500 less than Detroit could produce a similar car;

by 1983, that figure had grown to $2500 and today's figure

is about $1900. The manufacturing world is much more com-

petitive now than just a few years ago and America has

fallen behind (Port, 1986:100; Mitchell, 1986:103).

With the emergence of Japan, Korea, Brazil,

Malaysia and Taiwan as key competitors with the United

States, new standards of quality, reliability, productivity

and performance have been set. Unless our country is able

to improve, we will fall even farther behind (Meredith,

1985:42).

This research effort examines two concepts, Ada

Programming Support Environments (APSE) and Computer

*Ada is a registered trademark of the U.S. Govern-
ment (Ada Joint Program Office).

1

-S - . S~' - .V %%"V-V~ N1~

Integrated Manufacturing Systems (CIMS). Each of these

concepts offers productivity improvements in its principal

area. This paper explores these concepts to determine if

combining them could lead to synergistic improvements in

productivity.

Background

According to a recent issue of BusinessWeek, our

factories were "engines of innovation" during the years

immediately following World War II, but have been neglected

* since then. Now high technology, in the form of dMS, is

"reinventing the factory" and the factory is once again

* becoming the key component of international competition

(Port, 1986:100-101).

This new manufacturing age is not yet mature.

Port, using information from Dataquest, Inc., presents the

investment figures for factory automation in Table 1-1.

These investments show that a tremendous amount of money

is being spent on elements which automate the factory and

the production process but, so far, little has been

invested in integrating all of these systems. The invest-

ments in Table 1-1 are investments in "islands of automa-

tion," with nothing to bridge the gaps between them. CIMS

bridges the gaps in these islands of automation by inte-

grating them (Port, 1986:102; Gunn, 1986:50-58).

Paying attention to the way factories really func-

tion instead of indiscriminately embracing the automated

2

TABLE 1-1

FACTORY AUTOMATION INVESTMENTS (Port, 1986:102)
($ in millions)

1980 1985 1990*

Factory computers
and software $ 935 $ 2,861 $ 6,500

Materials handling
systems 2,000 4,500 9,000

Machine tools and
controls 3,000 4,800 7,000

Programmable
controllers 50 550 3,000

Robots and sensors 68 664 2,800

Automated test
equipment 800 2,000 4,000

Total spending $6,853 $15,375 $32,300

* Estimates

equipment aspect or fancy computer technology is the major

challenge facing the U.S. manufacturing industry today.

What appears to be lacking in the factory automation move-

ment is an integrating environment which can pull the many

I elements of automated equipment together into a whole which

, supports the total manufacturing system and not just iso-

lated parts. "CIMS builds on the premise that management

should work to optimize the whole business process rather

than individual functions or elements" (Willis and Sullivan,

1984:28).

pp 3

With CIMS, corporations will be able to master

and control all of their production resources as well as

link the manufacturing function with all of the other func-

tions of the business. A framework for CIMS is shown in

Figure 1-1 where computing technology is used to tie

together elements of the production function such as com-

puter aided design (CAD), robotics, computer aided manu-

facturing (CAM), automated materials handling, manufactur-

ing planning and control systems, and group technology.

This new age of manufacturing recognizes the importance of

information, along with the traditional manufacturing

resources of manpower, money, material and machines (Gunn,

1986:56-57; Peschke, 1985:1-2).

Manufacturing is not the only area experiencing a

problem with "islands." In the 1970s, the Department of

Defense (DoD) discovered that over 500 computer languages

and dialects were in use in its weapon systems. These pro-

gramming "islands" have contributed to the software crisis."

Characteristics of the software crisis include:

1. The lack of support for the entire software

life cycle;

2. The lack of trained programmers in industry

and DoD;

3. Customized languages and applications that do

not meet the applications requirements;

4

ILrl'tw S

Computer

Aided

Design

Group
Technology Robotic s

F ComputerShTechnology

Manufacturing Computer

Planning andAie

na Manufacturing

Automated

Materials

' Handling

°" Figure 1-1. CIMS Framework (Gunn, 1986:56)

5
Figure~~ 1-. CIM Frmeor 1Gnn 1986:56)

4. The failure to use good engineering techniques

to develop software;

5. The lack of a central control point for lan-

guage usage; and

6. Software that can seldom be reused from one

system to another.

Since the DoD estimated in 1974 that its software budget

would be over $3 billion annually (currently DoD spends

$10 billion per year, with the Air Force spending 5 per-

cent of its budget or $3 billion per year), a program was

established to reduce system development costs, increase

software reusability (portability), increase the porta-

bility of programmers, increase software reliability and

maintainability, and support the management of change and

complexity. This program is known today as the Ada Effort

(Booch, 1983:12; Canan, 1986; Sammet, 1986:723; Wallace,

1986:2).

The Ada Effort is a three-pronged approach to

achieve a standardized programming language, support

modern software engineering methods and define and enforce

a common software support environment. An environment is

defined by this researcher as the system software providing

integrated and interactive aid, support and/or conLrol for

accomplishing the current objective. The Ada Effort has

been led by the DoD, but has the support and active

6

- - .. ~,.IL

participation of industry and academia both here and

abroad. To date, the Ada programming language has been

developed, standardized and become the mandated programming

language for DoD and NATO mission-critical computer systems.

An Ada Programming Support Environment (APSE) requirements

document (STONEMAN) has been published, and industry and

the DoD are working to develop an APSE meeting of all the

STONEMAN requirements (Booch, 1983:11-21; DeLauer, 1983:11;

Lawlis, 1986:1-2; Wallace, 1986:3-8).

Scope of the Thesis

This research looks closely at a project initiated

to produce recommendations for CIMS standards within the

Air Force. It compares this with the work done by the DoD

to produce recommendations for APSE standards. The docu-

ment produced for the CIMS project was published in 1977

and the APSE document was published in 1980. Although

these are not new documents, neither has yet to be updated.

This is probably because a true CIMS has yet to be imple-

mented, APSE implementations are just beginning to appear,
and evaluations must be completed before updates are mean-

ingful.

One of the recommendations presented in the CIMS

volume was that the then DOD-I programming language (now

Ada) be evaluated for computer aided manufacturing

7

[4 G
I ,,

-, applications (Evans and others, 1977:159). The time has

come. That evaluation is the focus of this thesis.

Research Question

The research question is defined as:

How similar are the APSE and CIMS concepts, and

would the similarities justify applying APSE concepts for

solving CIMS problems?

Research Objectives

The research objectives are as follows:

1. Compare the objectives of APSE and CIMS.

2. Compare the design guidelines of APSE and CIMS.

3. Compare the pictorial representations of

APSE and CIMS.

4. Compare the component levels of APSE and CIMS

by examining the database, interfaces and toolset of each.

5. Identify major differences between APSE and

CIMS.

6. If deemed appropriate, recommend ways APSE

concepts can be applied to CIMS in order to help solve the

manufacturing crisis within the Air Force and U.S. industry.

Organization

The approach used in this research effort is to

describe the development of both CIMS and the APSE, compare

their concepts, and then determine how, if at all, APSE

8

I' 1

O.T

concepts can be applied to CIMS. A chapter is devoted to

each step in this approach.

Chapter II defines Computer Integrated Manufactur-

ing Systems and describes its functions, elements and com-

ponents. The history of CIMS traces the use of computers

for business and industrial applications from the 1950s

to the present. Following the history of CIMS is a descrip-

tion of the Air Force CIMS program, which is known as the

Integrated Computer Aided Manufacturing (ICAM) project.

The history of ICAM and the ICAM standards proposal are

then discussed in depth.

In Chapter III, the history of the Ada program is

traced from the recognition of the need for a standard DoD

language, through language development, test, validation

and adoption. Following the Ada language discussion is the

history of the APSE, including development and requirements

generation. An appendix, detailing the development of the

Ada and APSE requirements documents, is included to

chronologically summarize the evolution of the Ada program

within the Department of Defense.

Having now established a foundation for discussion,

Chapter IV compares APSE and CIMS concepts. First, the

comparison is at the macro level, addressing the objec-

tives, design guidelines and pictorial representations

of each. Following that, APSE and CIMS are compared at

9

the component level by examining the database, interfaces

and toolsets requirements of each.

Chapter V contains the conclusions based on the

research objectives. It also makes recommendations for

future work in this research area.

10

.-. 7

*1'.,

.%

• .II. Computer Integrated Manufacturing
Systems (CIMS)

Before comparing the APSE and CIMS concepts, a

foundation for discussing the concepts themselves must be

-.). established. Although computers have been a part of busi-

ness since the 1950s, the integration of computers into

manufacturing has not yet matured to a working concept.

In this chapter, CIMS is defined and described.

Introduction

The key issue in manufacturing corporations in the
Western world is how to respond to the problem of loss
of competitive strength and industrial vitality.
Western industry has lost market shares, millions of
factory jobs, and its head start in equipment and
process technology. (Skinner, 1985:219)

According to Dr. Wickham Skinner, the Harvard

Business School business professor considered to be the

prime mover in the "back to manufacturing" movement, the

real paradox in the issue addressed above is that while

professional management really started in the factory with

Frederick Taylor, the factory now is the most poorly

managed area of American business functions. He believes

that long-term manufacturing strategy has been ignored

by corporations and that is the cause of the problems

facing manufacturing corporations. Strategic manufacturing

planning would focus on properly using all the corporation's

11

..... L@

resources (men, machines, money, materials and information)

to achieve the corporation's competitive goals (Skinner,

1985:214-239).

Computer Integrated Manufacturing Systems (CIMS)

provides a generic manufacturing strategy that any corpora-

tion can adapt to its specific needs. Stan Manchuk, of

McDonnell Douglas - Tulsa, views CIMS as a "pervasive

manufacturing strategy" whose development represents "a

conscious long-term implementation of strategic, opera-

tional and tactical plans to achieve high productivity and

efficiency in plant operations" (Manchuk, 1984:34). Thus

CIMS, because of its impact on manufacturing organizations

and its potential to help resolve critical business prob-

lems, should be examined in detail.

The purpose of this chapter is to define and

describe CIMS, trace its history and describe the most

extensive investment in CIMS to date, that of the Air Force

Integrated Computer Aided Manufacturing (ICAM) Project.

CIMS Defined

In January 1984, Industrial Engineering magazine

began a twenty-four month examination of CIMS issues.

Their purpose was to address the key CIMS issues, provide

direction and information to manufacturing companies, and

to "encourage a sensible and logical approach to the devel-

opment of a CIMS" (Sadowski, 1984b:36).

12

Dr. Randall Sadowski, Purdue University professor

and editor of the Industrial Engineering CIMS series,

defines CIMS as a "truly integrated CAD/CAM system,

encompassing all the activities from the planning and

design of a product to its manufacture and shipping"

(Sadowski, 1984b:36). He views CIMS as a concept that

combines current (and future) manufacturing technologies

with business management and control, in order to achieve

the automated factory of the future. The CIMS goal is to

optimize the business as a total system rather than to

optimize only segments of the business, which would sub-

optimize the total system (Sadowski, 1984b:35-36).

CIMS Functions. Based on Sadowski's CIMS defini-

tion, the manufacturing activities of interest range from

initial product design through the production process to

shipping the finished product. For this thesis, manufac-

turing is defined to be "the conversion of a design into a

finished product," and production is defined to be "the

actual making, the physical act of doing what is necessary

to make the product" (ICAM Industrial Coalition definitions

as quoted by Young and Mayer, 1984:29). The functions

needed to accomplish CIMS manufacturing activities are:

1. Computer Aided Design and Computer Aided Manu-

facturing (CAD/CAM), which is the computerized design and

drafting of both products and the manufacturing activities;

13

--.- "--

2. Production scheduling and control, which is

the Master scheduling activity along with all the planning

for material management and requirements, starting with

product conception;

3. Process automation, which is computerized con-

*trol of process, test and inspection actions, as well as

computerized equipment performing certain processes;

4. Process control, which is the automated track-

ing of equipment activities, and the reporting of the need

for operator intervention;

5. Material handling and storage, which is the

computerized inventory handling system allowing storage

and retrieval of finished and purchased parts based on the

manufacturing system's requirements;

6. Distribution management, which is the order

processing, warehousing, transportation, sales reporting

and invoicing activities;

7. Maintenance scheduling and control, including

the scheduling of preventive maintenance, the reporting of

eq iment needing unscheduled maintenance or repair actions

and the record keeping of equipment usage rates; and

8. Finance and accounting, which includes the

reporting of operating actions, forecasting future require-

ments and tracking and analyzing cost data.

These functions exist today in various stages of maturity

C(manual systems to computerized systems) and acceptance by

14

dSi.. -

industry. The CIMS goal is to tie them together in a

logical system capable of optimizing the complete manufac-

turing system (Sadowski, 1984b:34-37,40; Willis and

* Sullivan, 1984:30-32; Young and Mayer, 1984:28-29).

CIMS Elements. Central to CIMS is information flow,

control and management. While this may seem surprising for

a manufacturing-oriented subject, the truth is that manu-

facturing today is "75% [an] information handling system

and only 25% a materials transforming system" (Skinner,

1985:63). Based on this one can identify basically two

flows in manufacturing: information and material. Both

enter a factory, are processed and transformed in a

sequence/sequences of operations, and leave the factory.

In CIMS, one is concerned with the operations that occur

to and with both information and materials.

CIMS Components. CIMS has two major categories of

components, hardware and software. These categories are

part of the elements of CIMS (information and materials

can be/are processed by hardware and software), as well as

being a part of the CIMS functions (since most of the

functions are/can be automated). Hardware runs the com-

ponents, elements and functions; software controls them

(Sadowski, 1984b:36; Willis and Sullivan, 1984:29-32;

Young and Mayer, 1984:29).

15

_"Z

History of CIMS (Sadowski, 1984a:34-42)

Computers have been involved in business and indus-

trial applications for over thirty years. Only recently

have computers found their way out of accounting-type

activities and into the operational elements.

1950s. Industrial computer applications began in

the 1950s, primarily in finance and administrative areas.

These applications were repetitive types of calculations

such as those required for payrolls and general ledgers.

The well defined, sequential processing nature of these

calculations fit the state of computer technology at the

time.

1960s. As computer capabilities increased and

costs decreased, more systems were developed with increased

processing speeds, more input/output devices, more non-

scientific programming languages and the systems were no

longer limited to sequential processing. During the late

1950s and early 1960s, the punch card was used in adminis-

trative and financial applications as well as in simple

manufacturing applications. The manufacturing applications

included simple inventory accounting, parts listings, labor

reporting and job tracking. Additionally, FORTRAN came

into use during this time period, for the engineering

aspects of manufacturing. Unfortunately, as computer

hardware was becoming more advanced, available and

16

9'-S

affordable, software was virtually nonexistent for many

manufacturing applications.

In the late 1960s, minicomputers emerged. Although

applications software did not exist for the minis, they

gained wide acceptance for engineering and statistical

manufacturing (process monitoring and control) applica-

tions. Many industrial and manufacturing companies began

writing their own software, primarily for inventory account-

ing, operations scheduling and requirements planning. The

benefits of in-house software development included custom-

ized applications programs. However, this customized soft-

-" ware was the beginning of "islands of automation," where
A'

each application stood alone. Although optimized for a

specific application, these various applications programs

could not interact with or support each other, much less

optimize the manufacturing process as a total system.

1970s. In the early 1970s, IBM published eight

volumes on a systems concept for a production inventory

control system. This communications-oriented production

information and control system (COPICS) presented a view of

the flow of data in a manufacturing organization from sales

forecasting to shop floor control. According to Sadowski,

"This concept (COPICS) provided the outline and defined the

boundaries which allowed the intelligent development of

17

5 .%z . <4i . . -. .. t . -.-. Ln,.-.

.47,.(

software for the control of manufacturing systems"

(Sadowski, 1984a:36). The software systems that resulted

from the COPTICS concept were mainly in the requirements

planning area and were widely adopted. Only a limited

number of production and inventory control systems were

produced. This resulted in another iteration of in-house

applications programs for production and inventory control

which were not integrated with the requirements planning

programs. Still greater numbers of islands of automation

were created. Engineering functions, such as CAD and CAM,

and factory automation were not included in commercial or

in-house applications because of a lack of software and

system support.

1980s. In the late 1970s and early 1980s, com-

puterized manufacturing systems were a target of not only

hardware and software producers, but also the consulting

community. The main drivers for this targeting were the

technological advances in both hardware and software, the

recognition of the need for such systems for a company's

survival, the increased affordability of hardware and

software and the recognition of this area as one that had

been totally ignored. By 1981, 283 different computerized

imanufacturing systems were available, most under $50,000

(but that figure does not include the cost of hardware or

the modifications to a company's existing software so the

18

I .

new applications could access the company's files)

(Sadowski, 1984a:40). Unfortunately, even these systems

were not generic, but rather were customized for specific

companies' applications, thus continuing the existence of

the islands of automation.

Many of these manufacturing systems applications

failed. Reasons cited for the failures include:

1. Not understanding what a manufacturing

system was;

2. Not understanding the need for accurate records

and timely feedback;

3. Placing the responsibility for the systems on

computer technicians, rather than manufacturing managers;

4. Numerous data sources containing inconsistent

and contradictory information; and

5. No disciplined relations existing between the

manufacturing systems (islands of automation) and the

organization's functional elements such as marketing, engi-

neering and physical distribution.

Analyzing the failures made it clear that a viable

manufacturing system must be integrated, contain an overall

database management system, data communications, and data

communications management system, and have the capability

of working on-line in an interactive mode (in direct com-

munication with the computer so the information in the

database is always current). The ideal computer integrated

19

manufacturing system would be company-wide and have the

capabi'ity of successfully communicating with and access-

ing a company-wide database.

Past experiences have defined the concept of what

a computer integrated manufacturing system should be, but

so far neither the required total systems architecture nor

the required integration software is available.

The Integrated Computer Aided
Manufacturing (ICAM) Project
(Evans and others, 1977)

The Air Force, more than any other organization,

has taken the lead in CIMS development through its ICAM

project.

History of the ICAM Project. In 1973, the Air

Force, recognizing the problems in attaining true computer

integrated manufacturing systems, developed a plan to

attempt the identification and grouping of the major manu-

facturing functions. After these functions were identified

and grouped, the Air Force planned an organized approach

to integrating the functions. The response from industry

at the conclusion of the identification effort was positive,

however there was disagreement publicly and privately as

to the direction any follow-on effort should take.

Another study was done in 1975, at the direction

of Deputy Secretary of Defense W. P. Clemens, to identify

cost savings opportunities in the defense industry through

20

A

* ' 1]~v ~

the use of computers. The study concluded that the com-

puterized integration of manufacturing subsystems was the

key to cost savings.

A result of the 1975 study was a new long-term

Air Force initiative with a goal of totally integratable

computer aided manufacturing. Part of this initiative was

to evaluate standards (existing and potential) which would

be useful for the ICAM project. The standards evaluation

project was divided into five tasks:

1. Identifying the current applicable standards;

2. Analyzing the existing standards;

3. Assessing actual industry usage of standards;

4. Recommending optimal standards for developing

the computer integrated manufacturing system; and

5. Identifying the standards organizations and

recommending the Air Force's role in standards activities

(Evans and others, 1977:1).

In June 1977, Evans and others of the National Bureau of

Standards (NBS) completed the final technical report on

CIMS standards evaluation.

National Bureau of Standards (NBS) Report. Accord-

ing to the NBS report, the goal of a true CIMS can be

achieved through the use of formal standards, technical

guidelines and ICAM program policy. Using these techniques

will allow the definition of the interfaces between the

21

S..

functional manufacturing modules (some of which already

exist) and their environment. Integration of the entire

system can only occur when the interfaces match and the

functional modules can fit together.

Evans and others identified four objectives which

they view as essential to the ICAM program's success:

software portability, module integration, distributed

data processing and exchangeable manufacturing data (Evans

A: and others, 1977:4).

Software Portability. Software portability

from a CIMS standpoint is achieved through developing all

software in standardized high level languages, following

specified programming practices and standardizing documenta-

tion practices (Evans and others, 1977:5). These will pro-

vide nortability in that the modules can be easily moved

between machines and users, and the modules can be more

easily integrated into a total system without extensive

modification. Five languages were reviewed for CIMS ade-

quacy (FORTRAN, COBOL, MUMPS, PL/1 and BASIC). None of

the languages met all of the requirements; however, FORTRAN

and COBOL were deemed to "suffice for near term applica-

tions" (Evans and others, 1977:31). The NBS report recom-

mended the Air Force investigate the use of DOD-I (which

later became Ada), which, although in development at the

time, appeared to meet the ICAM requirements.

22

Integratable Modules. In order to develop

a true general CIMS, a capability must exist to use soft-

ware developed by many different contractors. For example,

this software could include requirements planning from one

contractor, inventory control from a second, process

planning from a third and so on. Each of these application

programs must be partitioned into separate modules with well

defined interfaces so they can be integrated into a total

system.

Figure 2-1 describes a proposed ICAM system. The

major functions include ICAM application programs (such as

process planning, inventory control and tool selection),

a database management system (DBMS), ICAM system software

(such as text editors, debuggers and libraries) and host

system software (including assemblers, compilers, linkers

and file managers). The proposed system also contains three

types of interfaces: between the applications programs and

the host system, between application programs (through the

DBMS), and system software interfaces.

Application Program Interfaces.

Application program interfaces are viewed as a key to CIMS

software portability. The ICAM standards report assumes

a standardized and validated programming language (which

implies a standardized run time support monitor) and

therefore programs and programming languages can be inde-

pendent of the host system. According to Figure 2-1, the

23

V

USERS

HOST ICA-M ICAM DBMS

SYSTEM SYSTEM APPLICATION

SOFTWARE SOFTWARE PROGRAMS

a.

DBMS
RTSM RTSM INTER-

- ____ _FACE

OPERATING SYSTEM

.b

HARDWARE

""TO PERIPHERALS AND

COMMUNICATIONS SYSTEMS

Figure 2-1. ICAM Structure (Evans and
others, 1977:32)

24

applications programs will interface with only the user,

the operating system and the DBMS (through the operating

system and the DBMS interface). Application programs will

NOT interface with either the ICAM or host system software

(Evans and others, 1977:32-33).

Database Interfaces. Database

interfaces are critical for integrating application program

modules. The ICAM standards report proposes a single (but

perhaps distributed) database as the sole interface between

application programs. The database interfaces with the

user, the operating system and, through the DBMS inter-

face, with the application programs (Evans and others,

1977:32-34)

System Software Interfaces. The

NBS report recognizes that some system software will be

host computer dependent, but warns that overuse of the

J dependent software will negate the CIMS software portabil-

ity goal. To overcome this potential portability problem,

the report encourages communication between the ICAM

system software and the host system software. As Figure 2-1

shows, the host system software interfaces with the user,

the operating system and the ICAM system software. Program

development tools reside partly in the ICAM system software

and partly in the host system software. Interfaces with

the operating system include run time support monitors

h 25

i *.A. ~ . * - =

(RTSMs) for the ICAM system software and ICAM applications

programs, as well as interfaces with the host system

software, and the interface between operating system and

the database management system (DBMS) (through the DBMS

interface)(Evans and others, 1977:32-35).

Distributed Data Processing. Evans and

others view distributed processing as having tremendous

potential for CIMS. One proposed CIMS scenario is a series

of mini and micro computers, running dedicated application

programs, all integrated through a network for a total

computer aided manufacturing system.

This array concept is recommended for CIMS because

it would allow for an evolving approach to CIMS in existing

factories by networking the factory's current islands of

automation. Additionally, it would be a cost effective

system, since minis and micros are becoming more afford-

able.

Exchangeable Manufacturing Data. As noted

earlier in this chapter, current manufacturing is only

25 percent material flow and transformation with the

balance a flow and transformation of information. Manu-

facturing data includes, for example, engineering drawings,

performance and design specifications and work instructions.

Most of this data is currently computerized and stored in

word processors and CAD/CAM systems.

26

With the current requirements for competition in

contracting for weapon systems, the DoD is buying more and

more data and the rights to use that data for follow-on

acquisitions. The capability for exchangeable data will

reduce the DoD costs for data as well as encourage defense

contractors to be more efficient by using the company-wide

database for storing the manufacturing data.

Summary

The implemented CIMS factory will bridge the

islands of automation in existence today with fully auto-

mated and integrated design activities feeding fabrication

activities, which in turn will feed distribution activi-

ties. Host computers will oversee and control all associ-

ated elements. This CIMS implementation is perhaps the

best hope U.S. industries will have for competing against

the products of foreign manufacturing firms (Groover and

Wiginton, 1986:75).

Computer integrated manufacturing systems can pro-

vide a generic manufacturing strategy that any company can

adapt for its specific needs. Until a true CIMS exists,

however, the manufacturing system cannot be optimized,

and it will continue to be the most poorly managed area of

our business systems.

To date, the most extensive effort to produce a

CIMS has been the Air Force's ICAM project. The ICAM

27

N r l
4 ~* S -. * - , .

initiative is a planned, controlled, organized approach to

achieving a truly integrated computer aided manufacturing

system. In order to make CIMS a reality, a common support

environment will be required to control and direct each

subsystem. No CIMS efforts to date have yielded this

environment.

28

III. Ada

The Ada programming language and its associated

support environment appear to conceptually offer the capa-

bilities to produce a canmon support environment for CIMS.

In this chapter, Ada and the Ada Programming Support

Environment are described so that Chapter IV can compare

the similarities of CIMS and Ada support environments.

Introduction

Programming languages are neither the cause of nor the
solution to software problems, but because of the
central role they plan in all software activity, they
can either aggravate existing problems or simplify
their solutions. (Fisher, 1976:8)

Acknowledging Ada as the DoD standard programming

language is merely the tip of the iceberg of the "Ada

system," for Ada is so much more than just another program-

ming language. In this chapter, the discussion begins with

recognition of the need for a standard DoD programming

language and traces the history of the development of DOD-I,

later renamed Ada. Paralleling the Ada development was the

development of a programming environment to support the

Ada language. This environment, called the Ada Program-

ming Support Environment (APSE), and its history are also

I'.. described in this chapter.

29

~~!~ .1.. q

Recognition of the Need for
a DoD Standard Language

In the early 1970s, there were at least 500 com-

puter programming languages used by the DoD and its con-

tractors (estimates range from 500 to 1500 different lan-

guages and dialects). The software programs generated by

these languages cost over $3 billion in 1973 (approximately

46 percent of the total DoD ccmputer costs), with 56 per-

cent of the software costs in embedded computer systems.

According to Sammet (Sammet, 1986:722), an embedded com-

puter system is "a computer that is part of a larger--

probably noncomputer--system, which need not necessarily

be a weapon" (Booch, 1983:11-13; Sammet, 1986:722-723).

Originally, the high number of languages and their

dialects was justified by the belief that each must be

customized in order to be optimal for a specific system

requirement. However, there were no control/coordination

points nor standards offices in any of the services. In

1975, after the Office of the Director of Defense Research

and Engineering (DDR&E) review of the services' requests

for more money to customize more of the languages and

dialects, the High Order Language Working Group (HOLWG)

was established. The HOLWG, cotprised of military and

defense agencies' representatives, was tasked to oversee

the investigation into language standardization. The

HOLWG's goal was to "standardize on a few well-specified,

30

J_.

well-maintained languages to ensure the availability of

high-quality, production-engineered compilers for computers

used by the DoD" (Carlson, 1981:7). In addition to estab-

lishing the HOLWG, DDR&E emphasized the language standardi-

zation program's priority by stopping all language research

and development funds (Booch, 1983:13-14; Carlson, 1981:7;

Sammet, 1986:723).

The HOLWG's first task was to determine what the

DoD language requirements actually were. Four months after

the HOLWG was established, a language requirements document,

STRAWMAN, was distributed to military and other federal

agencies, industry, academia and the European computing
[.

community. Responses to STRAWMAN were incorporated into

WOODENMAN and in January 1976, the next revision, TINMAN,

was distributed. The TINMAN requirements included support

for modern software engineering methodologies, including

abstraction, information hiding, modularity, localization,

N. uniformity, completeness, and confirmability. Additional

requirements were for real-time control and exception

handling. Above all, the DoD was interested in life cycle

support, reliability, portability, reusability and suit-

ability for use in its embedded computer systems. TINMAN

was viewed as a complete language requirements document and

was given international distribution (Booch, 1983:14-15;

Carlson, 1981:7-8; Sammet, 1986:723).

31

Another HOLWG task in 1976 was to establish poli-

cies to control and coordinate the existing DoD computer

languages. DoD Directive 5000.29, Management of Computer

Resources in Major Defense Systems, required only DoD-

approved languages to be used in major systems unless it

could be proven cost-effective to use a non-approved lan-

guage for a specific application. By enforcing DoD-

approved languages, the HOLWG was able to establish focal/

control points for those languages. DoD Directive 5000.31,

Interim List of DoD Approved High Order Languages (HOL),

released in November 1976, allowed seven languages

(Table 3-1) to be used while the HOLWG was working to

finalize the language standardization program (Booch,

1983:14-15; Carlson, 1981:7-8; Sammet, 1986:723).

The TINMAN review in 1976 was done in two ways.

The first method was to review twenty-three existing

languages (Table 3-2) against the TINMAN requirements.

None of the existing languages was able to meet more than

75 percent of the TINMAN requirements; and all were cate-

gorized as inappropriate. The language review concluded:

1. None of the existing languages met the require-

ments for a common DoD embedded computer systems language.

2. There should be only one common language.

3. It was feasible to create a new language meet-

ing the TINMAN requirements.

32

TABLE 3-1

DOD DIRECTIVE 5000.31 APPROVED LANGUAGES
(Booch, 1983:15)

Dept/Agency Language

DoD FORTRAN

COBOL

Army TACPOL

Navy CMS-2
SPL/1

Air Force JOVIAL J3
JOVIAL J73

TABLE 3-2

LANGUAGES EVALUATED AGAINST TINMAN
(Sammet, 1986:723)

Used for DoD and/or Embedded Computers

CMS-2 CS-4 HAL/S JOVIAL3B
JOVIAL J73 SPL/l TACPOL

Used for Process Control and/or Embedded Computers
(mainly European)

CORAL 66 LIS LTR PEARL
PDL2 RTL/2

Research-Oriented Languages

ECL EL-I EUCLID MORAL

Widely Used and/or General Languages

ALGOL60 ALGOL68 COBOL FORTRAN
Pascal PL/l SIMULA67

33

. 2 .- :9 .' ; :<-'.> : , } /.'. , , < ," ..< :' 4 -. ..> -.<',- -'.%: . -'- .;'/- . - .Ae-.- Z,

4. The new language should be based on an exist-

ing language.

The HOLWG finally determined that Pascal, ALGOL68 and PL/l

were appropriate as base languages.

The second aspect of the TINMAN evaluation was to

consolidate comments to the evaluation of the requirements

document itself, which resulted in a further revision,

IRONMAN, during 1977 (Booch, 1983:15-16; Carlson, 1981:8;

Sammet, 1986:723).

Thus, DoD, after discovering the high cost of

computer software, the dominance of embedded computer sys-

tems and the uncontrolled proliferation of computer lan-

guages and dialects, determined that one new, standard

language, common to all DoD systems should be developed.

"It then set out with a refreshingly new approach to getting

such a language" (Lawlis, 1982:2).

Development of DOD-I

Based on the results of the TINMAN reviews, the

HOLWG began development of the common language, DOD-I, with

program management under the aegis of the Defense Advanced

Research Projects Agency (DARPA). Phase I, the language

design effort, was based on the requirements defined in

IRONMAN. Rather than hire a single contractor to develop

DOD-I, DARPA held an international design competition to

reach the world's best language designers. Of the

34

...-

seventeen teams proposing to design the new language, four

were chosen for the six-month Phase I effort. (Interest-

ingly, all four based their design on Pascal.) At the

end of Phase I, eighty review teams around the world spent

one year evaluating the designs in typical embedded com-

puter systems (Booch, 1983:16-17; Carlson, 1981:8; Sammet,

1986:724).

In 1978, based on the Phase I design evaluations,

the HOLWG issued STEELMAN, the final language requirements

document. STEELMAN incorporated the evaluation comments

and corrected deficiencies discovered during Phase I. Two

of the four Phase I design teams were selected to continue

language development, according to the requirements in

STEELMAN, during Phase II. In 1979, both final language

designs were sent out for public comment, and one version

(from the French design team) was finally selected as "Pre-

liminary Ada" (Booch, 1983:17-19; Carlson, 1981:8; Sammet,

1986:724) .

The DoD had searched for a new name for the new

language. It hoped that a non-military name would increase

the general appeal of the language. Augusta Ada Byron,

Countess of Lovelace, and the daughter of the poet, Lord

Byron, is viewed as the world's first computer programmer.

Her mathematical work with Charles Babbage led her to sug-

gest a method for programming Babbage's difference and

35

2' I

analytic engines. DOD-i became Ada in May 1979 (Booch,

1983:18-19) .

Ada Test and Validation

Ada's development did not end with the selection

of the final language design; the selection marked the

beginning of Phase III, Ada Formal Test and Evaluation.

The preliminary language reference manual was published in

* ~a highly respected computer journal of the Association for

Computing Machinery (ACM), the SIGPLAN Notices of the

Special Interest Group for Programming Languages (SIGPLAN).

It was also sent to over 2000 experts for comment. Addi-

tionally, the HOLWG contracted for development of a com-

piler validation facility which would be working before any

production Ada compilers were completed (Booch, 1983:19;

Sammet, 1986:725)

The rationale behind the compiler validation facil-

'V ity was to employ extremely tight configuration control on

the Ada language. The HOLWG wanted no dialects, subsets

or supersets of Ada. It set out to prevent them through

-!i the compiler validation activities, as well as applying for

American National Standards Institute (ANSI) and Inter-

national Standards Organization (ISO) standardization recog-

nition. Additionally, the DoD applied for, and received,

a trademark for Ada and also made the language reference

manual a military standard (MIL-STD-1815a). Consequently,

36

!;:?r

no changes in Ada are possible without the DoD's approval

(Booch, 1983:19-20; Sammet, 1986:724-725).

The Ada Joint Program Office (AJPO), established in

1980, as the follow-on to the now defunct HOLWG, is tasked

with reviewing and overseeing Ada policy within the DoD.

The Under Secretary for Defense made Ada mandatory for

mission-critical system development and upgrades within DoD

as of 1 July 1984 (DeLauer, 1983:1; Hicks, 1985:1). TheV,.

AJPO also promotes the acceptance, standardization and

recognition of Ada, not only within the DoD, but also

within industry and academia, both in the U.S. and abroad.

AJPO success with this promotion endeavor can be measured

by the adoption of Ada as a NATO standard effective

1 January 1986; the mandate for all United Kingdom Ministry

of Defense real time systems to be written in Ada effective

July 1987; and the funding of fifteen Ada software proj-

ects by the Commission of the European Communities (CEC)

between 1984 and 1986 (Lawlis, 1986:1-2; Lieblein, 1986:

736-737; Sammet, 1986:727).

Ada Programming Support Environment
(APSE) Development

In the 1977-1978 timeframe, during Phase II (con-

tinuing design effort) of the Ada language, a parallel

effort was started by the HOLWG to examine the programming

* environment for Ada. Early on the HOLWG realized

a programming language alone was not sufficient
to ensure the desired improvements in software

.1**-.37

development, but rather the language needed to be
coupled with a quality support system. (Booch, 1983:
18)

The environment, along with providing the quality support

system, would also assure life cycle support for software

projects; DoD software projects are extremely long-lived

(Booch, 1983:18; Freedman, 1985:3).

The concept of programming environments did not

begin with Ada. In general, a good programming environment

can be viewed as a set of integrated, interactive tools

and methodologies to assist in developing software programs.

Existing programming environments contain interactive tools

such as compilers, linkers, loaders, text editors, support

libraries and path testers, but they are not necessarily

integrated. Reasons for the small number of tools currently

available include the large number of computer programming

languages available (a lot of basic tools exist for many

languages, but few languages have extensive tools) and the

machine dependence of the languages (this ties into the

number of languages as well as to the number of different

machines which support the different languages). Booth

believes "the degree to which a complete and coordinated

environment is available will affect the development of

software far more than any individual programming language"

(Booch, 1983:352). Obviously, a complete and coordinated

programming environment will increase programming

38

A productivity (Barstow and others, 1984:xi; Booch, 1983:

352-353; Freedman, 1985:3-7).

The HOLWG circulated SANDMAN, which focused on the

managerial and technical issues of programming environ-

ments, in early 1978. In June 1978, approximately sixty

people from the military, industry and academia attended

a joint HOLWG-University of California at Irvine conference

to discuss SANDMAN, discuss the reviewers' comments to it,

and also to review the revised document which was named

PEBBLEMAN. By December 1978, a revised PEBBLEMAN was

publicly distributed (Booch, 1983:18; Freedman, 1985:3).

STONEMAN, the APSE requirements document based on

feedback from PEBBLEMAN, was first issued in November 1979,

with the final version published in February 1980.

STONEMAN defines an APSE in terms of the needs associated

with Ada programming (Booch, 1983:18; Freedman, 1985:3).

APSE Requirements

The STONEMAN document primarily specifies APSE

requirements, although it also provides assessment and

evaluation criteria for APSE designs and offers APSE design

and implementation guidance. The purpose of an APSE,

according to STONEMAN is

to support the development and maintenance of
Ada applications software throughout its life cycle,
with particular emphasis on software for embedded com-
puter systems. (DoD, 1980:1)

39

Given that Ada is the common language to be used for all

mission-critical DoD computer systems, and that the

STONEMAN APSE requirements will mandate complete, coordi-

nated APSEs, the potential benefits of an APSE include

reduced development costs for tools and compilers as well

as improved portability for programs, tools and program-

mers (Booch, 1983:352-353; Freedman, 1985:3-8; DoD, 1983:1).

A DoD goal for an APSE is that both programs and

tools be portable within an APSE. STONEMAN addresses an

approach to portability by stating requirements for the

layers (levels) of an APSE (Booch, 1983:352-353; Freedman,

1985:3-8; DoD, 1983:1).

APSE Structure. Figure 3-1 represents the layered

structure of an APSE. The innermost level is the host com-

puter hardware and operating system. On top of the host

computer system is the first level of an APSE: the "kernal"

or Kernal Ada Programming Support Environment (KAPSE).

KAPSE. The KAPSE essentially controls the

resources of the host computer for the APSE. It contains

the database, run time support functions and the communica-

tions functions the APSE needs. The purpose of the KAPSE

is "to allow portable tools to be produced and to support

a basic machine-independent user interface to an APSE"

(DoD, 1980:10). The KAPSE is essentially hidden from the

user, but it allows access control from the tools in the

40

Figre -1.APSE Strctue BbIhTan-
others,1981:28

HOS
0J OPRAIN

41TE

AD OMIE

next outer layer of the APSE, through the KAPSE, via the

standard machine independent interface to program libraries

and peripherals (Booch, 1983:354; Freedman, 1984:31; DoD,

1983:1,10).

MAPSE. Above the KAPSE is the Minimal Ada

program Support Environment (MAPSE). As its name implies,

the MAPSE contains the minimal set of tools needed by the

APSE to perform programming support functions over the life

cycle of a program or project. The MAPSE tools control the

host computer's resources through the standard KAPSE inter-

face, "just as a general controls his army through his

lieutenants" (Freedman, 1984:31,33). The minimal tools

prescribed by STONEMAN for a MAPSE will be described later

in this chapter (Booch, 1983:355-356; Freedman, 1984:31-34;

DoD, 1980:1,10-11,36-41).

APSE. The top level of the APSE contains

tools that go beyond the scope of the MAPSE. STONEMAN does

not prescribe tools for the APSE level, but describes some

of the tools' capabilities including object creation,

modification, analysis, transformation, display, execution,

and maintenance. Examples of the types of tools one might

find at the APSE level are those that impose modern sort-

ware engineering methodologies as well as those that may

meet the unique requirements of specific projects. The

STONEMAN description of APSE level tools will appear in a

* 42

later section of this chapter (Booch, 1983:356; Freedman,

1985:33; DoD, 1980:1-2,11,24-26,42).

APSE Portability Issues. A major DoD goal through-

out the development of Ada and APSEs has been portability

of both software programmers and software programs. Porta-

bility is impossible if either of the two are host computer

or host operating system dependent. A means of achieving

portability is through a common standardized KAPSE inter-

face with the host computer. To address this issue, the

AJPO established the KAPSE Interface Team (KIT) and the KIT

from Industry and Academia (KITIA) in 1982. The teams'

goal was to develop a common interface at the point where

the KAPSE relates to the host operating system (Sammet,

1986: 728)

*{ By 1983, the teams had developed a draft Common

APSE Interface Set (CAIS); the current version is a pro-

posed military standard. The CAIS consists of a set of

standard YAPSE interfaces written in Ada. Included in the

CAIS are six functional support areas:

1. Node support (for managing files, directories,

processes and devices);

2. Structure support (for the groupings of direc-

tories, partitions and configurations);

3. File input-output support;

43

.' . *' 4- " -- - . • . 'Z . " " . -. o.,,. o.-.~

4. Process support (which includes process control,

definition, communication, analysis and interrupts);

5. Device support (for interactive and non-

interactive devices);

6. Utilities support (for text, list and string

manipulation).

Compliance with the CAIS will provide transportable and

interoperable tools and programs (Freedman, 1985:214-220).

APSE Components. There are three basic components

to an APSE, the database, the user and system interfaces

and the toolset. Information is held in the database for

each project throughout the project's life cycle. The

interfaces allow integration and coordination of all the

APSE components with the user and the host computer system.

Software tools for developing, maintaining and controlling

the Ada programs are contained in the toolset (DoD, 1980:1)

Database. The database is key to an APSE;

it contains all the information for each project's entire

life cycle. In an APSE database, each separately identi-

fiable collection of data (an object such as a program

file) has the capability of being related to one or more

other objects. Additionally, each new iteration of an

object is kept in the database in order to provide an

historical audit trail throughout the life cycle of the

44

project, as well as to provide configuration control on

the objects themselves. Since several different projects

can exist in the database, the APSE can group objects under
I ,

their specified project and control user access to only

designated projects. The APSE can also generate management

level reports on the database itself (DoD, 1980:16-17).

Interfaces. The second APSE component,

interfaces, can be viewed from three perspectives: the

interfaces between the user and the APSE, the interfaces

within the APSE, and interfaces between the APSE and the

host computer system.

.1* According to STONEMAN, the user may initially con-

nect to the APSE through the host computer operating sys-

tem from a variety of terminal devices, ranging from the

most primitive teletype-like terminal to the most sophisti-

cated terminals imaginable. The user then communicates

with the APSE using a command interpreter. This user

interface can be either primitive or sophisticated, depend-

ing on the capabilities (sophistication) of the user's

terminal (DoD, 1980:21).

The interfaces within the APSE (intra-APSE com-

munications) have access to the database so that the tools

involved may use the objects in the database. Additionally,

one tool may invoke another tool. For example, while using

a text editor tool, the user may wish to invoke a compiler.

45

Interfaces between the APSE and the host computer

operating system (the commands used by software tools to

access the database and other system functions) are stan-

dardized via the CAIS in the KAPSE. The CAIS promotes tool

portability from one APSE to another. Because of CAIS

standardized interfaces, the only portion of an APSE which

must be customized for different computer systems is the

system dependent implementation of how the CAIS commands

are translated into host system commands.

Toolset. The final APSE component, the

toolset, contains tools for development, application pro-

gram management and project management as well as all the

project-unique tools that may be developed. The tools

jare coordinated and provide life cycle support for a proj-

ect from conception (original requirements specification)

through deployment, modification and project phaseout.

STONEMAN envisions a comprehensive APSE as providing tools

for requirements specification, overall system design, pro-

gram design, program verification and project management

(DoD, 1980:8).

The minimal tools for an APSE (located at the

MAPSE level) include a text editor, pretty printer (for-

mats text), Ada compiler, linkers, loaders, set-use static

analyzers (a debugging tool to track the changing values

for variables), control flow analyzers (debugging tools to

46

$K:' X>J'j o."A.: : 2 >K.I . ':; 1 *-.-.

trace controls in a program), dynamic interface routines

(to allow access to all available system terminals), file

.administrators (to allow file transfer and comparison),

command interpreters (to allow the tools to be used as well

as the user's commands to be understood), and a configura-

tion manager (to aid in controlling the history and per-

sistence of items in the project database) (DoD, 1980:

37-38).

v" The APSE toolset will not be closed. New tools

can be built with existing tools and added to the APSE.

The tools in the APSE will always be able to communicate

with each other. The communication will be such that proj-

ect history and configuration control can be continuously

monitored and maintained.

Additional tools (at the APSE level) as described

in STONEMAN can provide supplemental capabilities such as

syntax-directed program editing (for automatically correct

Ada syntax), documentation assistance (with the capability

of documenting Ada programs while they are being written

as well as implementing military documentation standards),
.3

project control (a tool for tracking progress against

review dates and budgets), configuration control (to assess

the impact of any program changes/modifications as well as

to check that all relevant parts of a system are modified)

and project verification (to automatically verify system

programs). They can also provide performance measurements

47

(to determine program and programmer efficiencies), fault

reporting (to handle error reports during program main-

tenance), requirements specifications (which could trace

the requirements from the conception of a project through

the design and coding stages), and tools to aid system and

program design. APSE level tools can also impose specific

software design methodologies and provide project unique

tools (DoD, 1980:42-44).

APSE Evaluation and

Validation (E & V)

In 1983 the AJPO organized an APSE E & V Task to

establish the capability for evaluating and validating

APSEs and APSE-component. Validation is the capability for

assessing APSE or APSE-component conformance to established

standards (such as CAIS). Evaluation is the capability for

assessing the qualities of the attributes of an APSE or

APSE-component for which no standards have yet been estab-

lished. These qualities can include reusability, effi-

ciency, and maintainability. The main benefits of the

E & V Task will be

. . .to encourage the development of quality APSEs,
to promote interoperability and transportability and
to provide users and developers with a uniform and com-
prehensive means for assessing and selecting APSEs
suitable for their specific applications and methodolo-
gies. (DoD, 1985:4)

The goals of the E & V effort are to establish a set of

E & V requirements and a minimal set of E & V tools to

48

assess APSEs, along with a feedback system for comments,

discussion and wide distribution of E & V team actions.

The long-term E & V objective is to establish an inter-

active database of E & V results available to all potential

APSE users and designers (DoD, 1985:4-5).

Summary

Once the need for a common language was recognized,

it was developed by the best minds available in a con-

trolled, disciplined fashion. The control continued from

requirements specification through development, test and

deployment. When the DoD recognized that the language

itself was only a part of the larger system, it proceeded

to develop the APSE and CAIS, again in a controlled, dis-

ciplined manner.

As this chapter has shown, Ada is more than just

another computer language. The Ada system consists of the

language itself and the APSE, which includes support for

the entire software lifecycle. With the development of the

Ada system, the DoD and industry and academia, both here

and abroad, are involved in changing the way hardware and

software is viewed. Software in the Ada system must no

longer be hardware dependent; it can much more easily be

standardized, portable, interoperable, reusable, reliable,

maintainable, controlled, efficient, modifiable, suitable

for embedded computer systems, supported over its entire

life cycle, robust, integrated and user friendly.

49

j p .

IV. Comparison of APSE and CIMS
S.-

In this author's opinion, the overriding benefit

of the Ada system's development, even over the cost effi-

ciencies that should result from increased productivity

from the use of Ada, is the concept of the APSE itself,

and the generalizability and applicability of APSE concepts

for other than strictly computer programming language sup-

port environments. For example, a 1985 Air Force Institute

of Technology (AFIT) thesis (Adams, 1985:121-122) concluded

that APSE concepts were directly applicable to a display

environment supporting the interactive generation of alpha-

numerics and symbology for aircraft simulation. In this

chapter, another parallel with APSE concepts will be

established; computer integrated manufacturing systems

concepts have much in common with Ada environment theory.

Introduction

The purpose of this chapter is to compare the

requirements for an Ada Programming Support Environment

(APSE) as embodied in the STONEMAN document (February 1980)

with the June 1977 National Bureau of Standards (NBS) tech-

nical report on standards for computer aided manufacturing.

While these two documents may appear dissimilar according

to their titles, the concepts they address really are quite

50

similar. Recall the Chapter III definition of an embedded

computer system: "a computer that is part of a larger--

probably noncomputer--system, which need not necessarily

be a weapon" (Sammet, 1986:722). Computer integrated manu-

facturing systems (CIMS), also referred to by the National

Bureau of Standards (NBS) report (Evans and others, 1977)

as integrated computer aided manufacturing (ICAM) is, by

definition, made up of embedded computer systems as well as

other functional systems. Additionally, recall the purpose

of an APSE is to

. . . support the development and maintenance of Ada
applications software throughout its life cycle with
particular emphasis on software for embedded computer
applications. (DoD, 1980:1)

Based on these underlying definitions that apply

to both APSEs and CIMS, it becomes not only appropriate to

compare these two documents, but mandatory. If the two

documents are parallel in scope and objective, it makes

sense for government and industry to combine their concepts

for multi-purpose applications.

The document comparisons will first be done at the

macro level, comparing scopes, objectives and goals of

APSEs and CIMS. Following this top level assessment, the

analysis will be broken down into three areas, aligned with

the three components of an APSE: database, interfaces,

and tools.

51

APSE versus CIMS

Objectives. According to STONEMAN, the objectives

of an APSE are to provide cost-effective support throughout

the entire project life cycle. The support provided to the

project team includes all functional areas of a software

project, "particularly in the embedded computer system

field" (DoD, 1980:8).

CIMS objectives, according to the ICAM standards

report, include software portability, integratable modules,

distributed data processing and manufacturing data that is

exchangeable (Evans and others, 1977:4).

Design Guidelines. Admittedly the two objectives

appear, at first glance, to have little similarity. How-

ever, further research into the objectives provides evi-

dence of common ground. Both are referring to support for

the complete life cycle of embedded systems. The design

guidelines for an APSE include software quality (relia-

bility, maintainability, performance, evolution and respon-

siveness to changing requirements) and simplicity. That is,

the APSE structure shall be straightforward, easy to under-

stand and written in only one language, Ada. Additional

guidelines include life cycle support, project team sup-

port, user helpfulness, uniform communications protocols

and system and project portability. Portability is a key

common goal for both APSEs and CIMS (DoD, 1980:14-15).

52

040..

iw7

Portability. Portability from an APSE

system and project standpoint is related to the APSE itself.

The APSE will be standardized where it interfaces with the

host computer by use of the CAIS. This means the APSE will

be able to easily move from one computer system to another

with just a new system dependent "kernel" implementation.

For example, as only a relatively small part of one stu-

dent's masters thesis work, the current prototype APSE

developed at AFIT, called the AFIT Research Concept for an

Ada Development Environment (ARCADE), while resident on the

UNIX operating system, is in the process of being ported

to the VMS operating system (Linski, 1986). With the APSE

portable, all of the APSE tools and application programs

(projects) are also portable.

Software portability from a CIMS standpoint is

achieved through developing all software in standardized

high level languages, following specified programming prac-

tices and standardizing documentation practices (Evans and

others, 1977:5). Furthermore, the ICAM project indicates

that software dependence "should be minimized with inter-

faces provided through machine independent software written

in a high level language" (Evans and others, 1977:35).

However, the ICAM standards report does not go as far as

STONEMAN in describing how software portability can be

achieved.

h 53

Additional Design Guidelines. Other STONEMAN APSE

design guidelines include integrated and granular tools,

which are software tools that can communicate with each

other as well as being able to combine in different

fashions to meet the user's requirements. Also, the APSE

must be open-ended, that is, the tools can improve, update,

and modify existing tools as well as create new tools.

This concept of open-endedness allows for the inclusion of

application-specific software, such as that which could

provide ICAM support.

Robustness. The final two STONEMAN design

guidelines, robustness and hardware usage, are perhaps the

most critical for both an APSE and for a CIMS. Robustness

means the software can protect itself from system and user

errors, i.e., handle errors where possible, and, when

failure is inevitable, fail gracefully. The software must

be able to react to unforeseen circumstances and provide

a way to diagnose and recover from error conditions.

Normally when something unforeseen occurs during

the execution of a computer program, control passes from

the program itself to the computer operating system and the

program is aborted. In a critical embedded system this

could be disastrous. A typical example would be a hospital

life-support system (with an embedded controlling computer).

If a failure should occur, we expect the life support

54

system to continue to operate (albeit in a degraded mode)

and also to signal the danger to the system operator.

Ada and the APSE provide the method for supporting this

requirement.

A CIMS example of robustness would presuppose a

power failure in one automated assembly area of a factory.

Rather than shutting down the entire automated factory,

a robust CIMS would identify the fault to the operator and

continue the rest of the factory operations (in a degraded

mode).

Hardware Usage. Hardware usage by an APSE

will be designed to exploit modern, high capacity hardware

(DoD, 1980:15). The NBS report requires the ICAM project

to be developed and implemented to at least the fourth

generation of computer systems, the most advanced hardware

at the time of the ICAM standards report.

Thus, research into the objectives of both an APSE

and CIMS reveals they want basically the same things:

simplicity; portability; standardized languages, program-

ming and documentation practices; system robustness and

exploitation of modern hardware capabilities. Apparent

differences in the two documents are only in the level to

which the requirements are specified. This is to be

expected due to the specific application orientation of

the ICAM standards report and the general environment

orientation of STONEMAN.

55

* s.s26-~

Pictorial Representations. Before beginning the

detailed comparison of APSE and CIMS components, a review

of the location of the major components of an APSE and a

CIMS is indicated.

APSE. Figure 4-1 shows the APSE archi-

tecture as described in Chapter III. Figure 4-2 is an

adaptation of Figure 4-1 for ease of comparison. At the

core is the host operating system which maintains and con-

trols the hardware and the actual system database. The

kernal APSE (KAPSE) provides all (and the only) interfaces

between the APSE and the host system including access con-

trols to system dependent functions (Babich and others,

1981:28; Booch, 1983:354).

The level above the KAPSE contains the STONEMAN-

required minimal tools support and is known as the Minimal

APSE or MAPSE. The user does have access to the MAPSE;

it contains all the basic tools for program development

and support, as well as the database management system.

All of the MAPSE tools can communicate with each other

* (Babich and others, 1981:29; Booch, 1983:354).

The top level of the environment, the full APSE,

contains tools which can be software tools supplied by the

user (possibly supporting a specific application), as well

as tools that go far beyond the minimal requirements in the

MAPSE. STONEMAN does not prescribe tools for the APSE

56

* ~ ~ ~ ~ ~ ~ ~ AS Fiue4 PESrcue(a INdER
othrs 1981:28)E

.4l

HO7

I OPERATING

.Supplied S
Other

ro Bcommand
Inter-

MHardware preter

stem

User

%Figure 4-2. Adapted APSE Structure
i (Adapted from Babich and others,

1981:28)

58

-2;. L

level, but rather leaves it open to be extended and meet

specific user needs. All tools, whether at the MAPSE or

full APSE level, can only access host system functions by

using standard calls (Babich and others, 1981:27-34;

Booch, 1983:356-357).

CIMS. Figure 4-3 shows the ICAM system as

described in Chapter II. Figure 4-4 is Figure 4-3 from a

slightly different perspective to make it easier to com-

pare with the APSE Figure 4-2 (imagine the left and right

ends of 4-3 have been brought together to form the circle

in Figure 4-4). At the core is the hardware and the

operating system. Interfaces with the operating system

include run time support monitors (RTSMs) for the ICAM

system software and ICAM applications programs as well

interfaces with the host system software and the interface

between operating system and the database management system

(DBMS) (through the DBMS interface) (Evans and others,

1977:32-35).

The RTSMs, DBMS, oprating system, hardware and

part of the host system software comprise the ICAM version

of a "kernal." Note that the APSE kernal has one standard-

ized interface while the ICAM kernal has four. Also note

the overlapping of the host dependent system software and

the similarities with the KAPSE.

59

USERS

HOST ICAM ICA4 DBMS

SYSTEM SYSTEM APPLICATION

SOFTWARE SOFTWARE PROGRAMS

DBMS

RTSM RTSM INTER-
FACE

OPERATING SYSTEM

HARDWARE

TO PERIPHERALS AND
COMMUNICATIONS SYSTEMS

Figure 4-3. ICAM Structure (Evans and
others, 1977:32)

60

-=*

Figre -4.AdatdIAMtutr
(AapeyfosEantndohes

S1977:32

61S

*%.M ,..,A

Moving away from the core, the next level contains

the ICAM system software (which contains all the software

tools for developing, modifying and maintaining the ICAM

application programs), ICAM application programs, the DBMS

and the host system software. Note that the ICAM system

software and DBMS contain most of the tools found in the

MAPSE; the balance of the MAPSE tools are in the host sys-

tem software (compilers and linkers) (Evans and others,

1977:32-35).

The outer layer of the ICAM structure is parti-

tioned into host and ICAM systems software as well as a

DBMS, while the tools in an APSE are more modularized.

The integrated modular tools within the APSE contain appli-

cations and high level "system software"; the data manager

tool is the APSE equivalent of a DBMS. The APSE modularity

illustrates a permeable barrier while the CIMS partition-

ing (with impermeable barriers) affords much less flexi-

bility. In both the APSE and ICAM structures, the user

interfaces with the structure through the outer barrier via

a command interpreter.

Hence, the only real differences between the two

postulated structures are the extent to which the user

and the tools can have uncontrolled access to system

resources (the ICAM structure encourages controlled access

but permits limited uncontrolled access while the APSE

permits no uncontrolled access whatsoever) and the extent

62

of tool integration possibilities (the ICAM structure does

not provide for interactions between high level tools from

different software sets--such as an ICAM system software

module with a host system software module--while the APSE

permits total flexibility in the integration of high level

tools).

Component Levels

A comparison of the component level of the APSE

and CIMS leads to the same conclusion.

Database. Both the APSE and CIMS use a database

as a central component.

APSE. The database is the real key to an

APSE--it contains all the information for each project for

the project's entire life cycle (DoD, 1980:16). In an

APSE database, each separately identifiable collection of

data can be related to other objects. Additionally, all

iterations of an object are kept in the database to provide

an object's history through the life cycle of the project

and to provide configuration control on the objects them-

selves. Since different projects can exist, the APSE can

group objects under specified projects and control user

access to only designated projects. The APSE also can

generate management level reports about the database

(DoD, 1980:16-17).

63

CIMS. The ICAM standards report says the

database is "the most critical element" and requires a

single database as the "source of all information for, and

hence the interface between, all application programs"

(Evans and others, 1977:33).

The NBS technical report recommends a common data-

base management system in order to integrate all software.

It further suggests a relational database management system

for ease of use (only one data structure for the user to

learn), data independence (rather than data that is sequen-

tially sorted, indexed or restricted to certain access

paths) and flexibility. An additional benefit to a common

relational database management system and common data struc-

ture is that distributed databases (resident on different

computers) are possible, yet each can still access data

on another computer system (Evans and others, 1977:194-

196,204).

This modular design (of distributed databases) and

common relational database management system provides the

integrated modules which are a CIMS objective. The APSE

also provides for integrated modules through its standard-

ization, objects, projects and relations between/among

objects. The words are somewhat different but the intent

is the same.

64

n ~

Interfaces. The APSE and CIMS views of interfaces

are described in detail in Chapters III and II respec-

tively. Below is a summary of those descriptions.

APSE. The APSE interfaces can be viewed

from three perspectives: the interfaces between the user

and the APSE, the interfaces within the APSE, and inter-

faces between the APSE and the host computer system. As

discussed in Chapter III, the user communicates with the

APSE using a command interpreter. The interfaces within

the APSE (intra-APSE communications) have access to the

database so that the tools involved may use the objects

in the database, and one tool may invoke another tool.

Interfaces between the APSE and the host computer operating

system (the commands used by software tools to access the

database and other system functions) are standardized via

the CAIS.

CIMS. The ICAM standards report addresses

interfaces in three categories: interfaces between the host

system and applications programs, interfaces between

application programs through the DBMS and system software

interfaces. As discussed in Chapter II, the applications

programs will interface with the user, the operating system

and the DBMS (through the operating system and the DBMS

interface). The database interfaces with the user, the

operating system and, through the DBMS interface, with

65

the application programs. The host system software inter-

faces with the user, the operating system and the ICAM

system software.

The equivalent to intra-APSE communications does

not exist in the ICAM standards report. Instead, the pro-

gram development tools reside partly in the ICAM system

software and partly in the host system software. Indeed,

while the interface concepts addressed by the NBS report

are similar to the APSE interface concepts (increasing

standardization and portability potential), the recom-

mended CIMS interface actualizations appear to come up

short of achieving true portability and standardization.

Toolset. The difference in the APSE and CIMS dis-

cussions of tools is in the level of specification. These

also were described in more detail in Chapters III and II

respectively, and those descriptions are summarized below.

APSE. As discussed in Chapter III, the

APSE toolset contains software tools for development,

application program management and project management as

well as all the project-unique tools that may be developed.

The tools are coordinated and provide life cycle support

for a project. The APSE toolset will not be closed. New

tools can be built with existing tools and added to the

APSE.

66

5L - ~ '..N

H.. t U% % . 4 .i

CIMS. As discussed in Chapter II, the

ICAM standards report indicates that CIMS systems software

should contain "all of the software tools needed for (CIMS)

development, maintenance and operation" (Evans and others,

1977:34). Specialized software for a given project may

range from

minor extensions of extant tools to new composite
tools formed by integrating and refining several dis-
tinct packages . . . [this] requires that the building
block tools be carefully designed, with flexible inter-
faces and modular design. (Evans and others, 1977:219)

Thus APSE and CIMS toolsets have the same minimum

requirements, the same concepts of specialization and the

same objective, transportability. The two toolsets do not,

however, appear to have the same ease of use and extend-

ability (extensibility) capabilities because of the lack

of an interface between/among the tools and because of the

partitioned location of the CIMS tools.

Differences

The ICAM standards report, while conceptually

similar to STONEMAN, does address some topics not covered

by STONEMAN but still technically related to an APSE

(again, this is related to the fact that the CIMS document

is more specific to an application area than STONEMAN).

These topics include numerically controlled (NC) machine

part programming languages, computer aided design/computer

67

-- ~~~~~~~ 4-% ~.

aided manufacturing (CAD/CAM) interface standards, media

standards and di . ributed databases.

At the time of the NBS report (1977), the two

recommended NC programming languages were Automatically

Programmed Tools (APT) and Computer Programs for Auto-

matically Controlling Tools (COMPACT II). Since that time

and with the increased use of direct NC (DNC), computer NC

(CNC) and robotics, no one standardized language dominates

the field. Recently, reports have been published of

attempts to standardize and integrate all NC-related

language requirements with the current CAD/CAM languages.

Grossman suggests merging APT with A Manufacturing Language

(AML) with the result being an object-oriented approach

for NC, robotics and CAD (Grossman, 1986:515-522).

STONEMAN requires that all APSE-level programs use

the standard Ada Language. This standardization on Ada

could be applied to all CIMS applications programs and high

level (outside the kernal) software tools. However, the

NBS report also refers to the use of languages in two

areas not really addressed by STONEMAN. One is the lan-

guage of user interfaces, such as CAD/CAM interfaces, or

how a user can best communicate with application programs.

The second is the low level languages, such as NC program-

ming languages, used to instruct the embedded computer

processors themselves. Standardization in these areas

68

may be desirable, but the STONEMAN work implies that it may

not be required in order to achieve the objectives of the

ICAM project.

Media standards recommendations in the NBS report

include using magnetic tape conforming to ANSI standards

as the primary information exchange and storage media,

deemphasizing the use of punched paper cards and avoiding

punched paper tape (Evans and others, 1977:239). STONEMAN

does not specifically address media standards since the

media standards issues relate more to the system dependent

KAPSE area (STONEMAN is more concerned with the higher

level software--it does not really delve into hardware

issues except to say what hardware must be supported by the

KAPSE).

The ICAM standards report does not official'

recommend a distributed database over a centraliz, J data-

base, but does point out several advantages to a distri-

buted system including local, rather than cernral, data

validation; flexibility and localized control; and more

potential modularization. Disadvantage- are also discussed,

the main ones being: whether or not t'e user must specifi-

cally know where each dataset is located and whether or not

there can be common communications to all the databases

(Evans and others, 1977:196,199).

Distributed databases are not specifically addressed

in STONEMAN. Prototype Aaa distributed database management

69

systems currently exist as a result of research sponsored

by Defense Advanced Research Projects Agency (DARPA) and

Naval Electronics Systems Command (NAVELEX) contracts

(Chan and others, 1986:G.1.3.1- G.1.3.20).

Summary

In this chapter, the APSE requirements as embodied

in STONEMAN have been ccmpared with the ICAM standards

report recommendations for CIMS standards. Both documents

are similar in their overall objectives, design guidelines

and hardware usage recommendations. Additionally, when

compared from an APSE component perspective, the documents

have similar requirements for databases, interfaces, and

tools. The NBS document addresses four main items which

STONEMAN does not: NC programming languages, CAD/CAM inter-

faces, media standards and distributed databases. Some

differences are to be expected however, due to the specific

application orientation of the ICAM standards report and

the general environment orientation of STONEMAN. The point

is that the similarities are significant, indicating that

APSE concepts should be applied to future CIMS work.

/70

V. Conclusions and Recommendations

Process control and factory automation applications
look a great deal like DoD applications. Ada isn't
just the DoD's language. It's the best language for
large, complex software development. (Ken Drager,
President of Computer Corporation of America, as quoted
by Carlyle, 1986:30)

Conclusions

Recall the research question postulated in Chap-

ter I: How similar are APSE and CIMS concepts, and would

the similarities justify applying APSE concepts for solving

CIMS problems? Based on the discussions in Chapter IV,

this chapter provides the answer to that research question,

by addressing each research objective.

Research Objective 1. Compare the objectives of

APSE and CIMS: Although the specifics are different, at a

high level both APSE and CIMS refer to support for the

complete life cycle of an embedded computer system.

Research Objective 2. Compare the design guide-

lines of APSE and CIMS: Both an APSE and CIMS are to be

simply designed, portable, based on standardized languages,

follow standardized programming and documentation practices,

support system robustness and exploit the capabilities of

modern hardware.

71

% ~

Research Objective 3. Compare the pictorial repre-

sentations of APSE and CIMS: The only real differences

between the APSE and CIMS postulated structures are the

extent to which the user and the tools can have uncon-

trolled access to system resources and the extent of toc-

integration possibilities.

Research Objective 4. Compare the component levels

of APSE and CIMS by examining the database, interfaces and

toolset of each:

Database. Both APSE and CIMS use a data-

base as the central component. Each requires the database

Sto be the source of all information for applications pro-

grams. The intent of both the APSE and CIMS databases is

the same in that each provides integrated modules which

support ease of use, data independence and flexibility.

Interfaces. While the interface concepts

addressed in the NBS report are similar to the APSE inter-

face concepts, the recommended CIMS interface actualiza-

tions appear to come up short of achieving true portability

and standardization.

Toolset. The APSE and CIMS toolsets have

the same minimum requirements, the same concepts of special-

ization and the same objective, transportability. The two

toolsets do not appear to have the same ease of use and

72

extensibility capabilities because of the lack of an

interface between/among the tools and because of the par-

titioned location of the CIMS tools.

Research Objective 5. Identify major differences

between APSE and CIMS: The APSE and CIMS differences appear

to be more of a matter of the scope of the two documents

(STONEMAN and the NBS report) than of actual conceptual

differences.

Standardization in the areas of low level languages

(such as NC programming languages) and the languages of

user interfaces (such as CAD/CAM interfaces) may be

desirable, as is recommended in the ICAM report. However,

STONEMAN implies that this standardization may not be neces-

sary to achieve the ICAM project objectives, as long as a

standard interface exists between the high level tools and

the low level system software. Since STONEMAN really

addresses higher level software, the issue of media

standards, which is predominantly hardware oriented, is

never addressed for an APSE. Distributed databases are

not addressed in STONEMAN (the idea was to get implementa-

tions of "simple" APSEs before worrying about more complex

issues). However, as the work on distributed databases

begins to mature, it offers an APSE the same advantages as

it offers a CIMS.

73

Research Objective 6. If deemed appropriate,

recommend ways APSE concepts can be applied to CIMS in

order to help solve the manufacturing crisis within the

Air Force and U.S. industry: Having determined that APSE

concepts can be appropriately applied to CIMS, CIMS could

benefit greatly from applying the APSE ideas of:

1. Standardizing on Ada as the HOL to be used

for high level software tool development (including

applications-specific software).

2. Using an APSE-like software environment with

flexible intra-APSE interfaces, but a very strict standard

(CAIS) interface between the high level tools and the

kernal.

These Ada standards could be the key to unlocking the doors

that until now have been blocking the realization of CIMS

in the Air Force as well as in U.S. manufacturing.

Recommendations for

Follow-on Research

Many potential follow-on research efforts can be

proposed for this initial comparison of APSE and CIMS con-

cepts. They include the following:

1. Examine ARCADE to determine if it can meet the

CIMS requirements.

2. Determine the current status of the ICAM

standards and compare them with STONEMAN.

74

3. Develop a proposed prototype CIMS application

using Ada and the APSE capabilities to demonstrate the com-

bined concepts' feasibility for enhancing manufacturing

productivity.

4. Compare STONEMAN and the CAIS with standards

proposed for commercial CIMS applications, such as General

Motors' manufacturing automation protocol (MAP), in order

to extend the combined APSE/CIMS concept for potential

government applications.

75

Appendix: Chronology of Ada and APSE
Requirements Documents

Ada APSE
Requirements Requirements

Documents Documents

July 1975 STRAWMAN

August 1975 WOODENMAN

January 1976 TINMAN

January 1977 IRONMAN

July 1977 IRONMAN
(Revised)

June 1978 STEELMAN

July 1978 SANDMAN

July 1978 PEBBLEMAN

February 1980 STONEMAN

76

Bibliography

Adams, Karyl A. A Display Environment Supporting the
Interactive Generation of alphaNumerics and Symbology
with DESIGNS on the Future. MS thesis, AFIT/GCS/MA/
85J-1. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, June 1985.

Babich, Wayne and others. "The Ada Language System"
(reprinted from Computer), Ada. Waltham MA: SofTech,
Inc., 1981.

Barstow, David R. and others. Interactive Programming
Environments. New York: McGraw-Hill Book Co., 1984.

Booch, Grady. Software Engineering with Ada. Menlo Park
CA: Benjamin/Cummings Publishing Co., 1983.

Canan, James W. "The Software Crisis," Air Force Magazine,
69: 46-52 (May 1986).

Carlson, William E. "Ada, A Promising Beginning" (reprinted
from Computer), Waltham MA: SofTech, Inc., 1981.

Carlyle, Ralph Emmett. "Putting Spurs to Ada," Datamation,
32: 30-31 (1 September 1986).

Chan, Arvola and others. "A Database Management Capability
for Ada" (reprinted from the Proceedings of the Annual
Washington Ada Symposium, March 1985), Proceedings of
the First International Conference on Ada Programming
Language Applications for the NASA Space Station,
edited by Rodney L. Bown. G.1.3.1 - G.1.3.20. Houston:
University of Houston-Clear Lake, 1986.

DeLauer, Richard D., Under Secretary of Defense, Research
and Engineering. Memorandum for Secretaries of the
Military Departments and others on Interim DoD Policy
on Computer Programming Languages. Department of
Defense, Washington, 10 June 1983.

Department of Defense. "Requirements for Evaluation and
Validation of Ada Programming Support Environments."
Evaluation and Validation Team Requirements Working
Group Working Paper Version 2.0, 6 December 1985.

77

----- Requirements for Ada Programming Support Environ-
ments (STONEMAN). Washington: Government Printing
Office, February 1980.

Evans, John M. and others. Standards for Computer Aided
Manufacturing. April 1976- December 1976. Contract
FY145776-00369. National Bureau of Standards, Washing-
ton, June 1977 (AFML-TR-77-145).

Fisher, David A. "A Common Programming Language for the
Department of Defense - Background and Technical
Requirements." Report P-1191. Institute of Defense
Analysis, Washington, 1976.

Freedman, Roy S. Programming with APSE Software Tools.
Princeton NJ: Petrocelli Books, 1985.

Groover, Mikell P. and John C. Wiginton. "CIM and the
Flexible Automated Factory of the Future," Industrial
Engineering, 18: 75-85 (January 1986).

Grossman, David D. "Opportunities for Research on Numerical
Control Machining," Communications of the ACM, 29:
515-522 (June 1986)

Gunn, Thomas. "The CIM Connection," Datamation, 32: 50-58
(I February 1986).

Hicks, Donald A., Under Secretary of Defense for Research
and Engineering. Memorandum for Secretaries of the
Military Departments and others on Implementation of
Ada in Department of Defense Programs. Department of
Defense, Washington, 2 December 1985.

Lawlis, Maj Patricia K. "Ada - Europe, 5-9 May 1986, Ada,
Managing the Transition." Trip Report. School of
Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, May 1986.

------ Arbitrary Precision in a Preliminary Math Unit for
Ada. MS thesis, AFIT/GCS7MA/82M-2. School of Engineer-
ing, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, March 1982.

Lieblein, Edward. "The Department of Defense Software
Initiative--A Status Report," Communications of the
ACM, 29: 734-744 (August 1986).

78

Linski, 2Lt David M. "Design and Implementation of a Proto-
type APSE with a CAIS." Independent Study Prospectus.
School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, June 1986.

Manchuk, Stan. "CIM Project May be Doomed if Key Building
Blocks Are Missing," Industrial Engineering, 16: 34-43
(July 1984).

Meredith, Jack. "The Economics of Computer Integ ted Manu-
facturing" (reprinted from the 1984 Fall Industrial
Engineering Conference Proceedings), Computer Inte-
grated Manufacturing Systems: Selected Readings, edited
by John W. Nazemetz and others. Atlanta: Industrial
Engineering and Management Press, 1985.

Mitchell, Russell. "Painful Lessons," BusinessWeek,
100-103, 16 June 1986.

Peschke, Lt Col Richard E. A Structured Optimization Method
for Information Resource Management. PhD dissertation.
University of Houston, Houston TX, 1985.

Port, Otis. "High Tech to the Rescue," BusinessWeek,
103-104, 16 June 1986.

Sadowski, Randall P. "History of Computer Use in Manufac-
turing Shows Major Need Now is for Integration,"
Industrial Engineering, 16: 34-42 (March 1984a).

------ "Computer-Integrated Manufacturing Series will
Apply Systems Approach to Factory of Future," Industrial
Engineering, 16: 35-40 (January 1984b).

Sammet, Jean E. "Why Ada is Not Just Another Programming
Language," Communications of the ACM, 29: 722-731
(August 1986).

Skinner, Wickham. Manufacturing: The Formidable Competi-
tive Weapon. New York: John Wiley and Sons, 1985.

Wallace, Robert H. Practitioner's Guide to Ada. New York:
McGraw-Hill Book Co., 1986.

Willis, Roger G. and Kevin H. Sullivan. "CIMS in Perspec-
tive: Costs, Benefits, Timing, Payback Periods are
Outlined," Industrial Engineering, 16: 28-36 (February
1984).

Young, Robert E. and Richard Mayer. "The Information
Dilemma: To Conceptualize Manufacturing as Information
Process," Industrial Engineering, 16: 28-34 (September
1984).

79

N--N

Vita

Kathleen M. Austin was born on 17 March 1952 in

Columbus, Nebraska. She graduated from Columbus High

School in 1970. After graduating from the University of

Nebraska at Omaha in December 1977, she worked for Allied

Chemical until entering the Air Force in February of 1979.

She was commissioned through OTS in May of the same year.

Her first assignment was at Rome Air Development Center,

Griffiss AFB, New York, where she served as Chief, Program

Control, for the PAVE MOVER (now JSTARS) and Assault

Breaker Programs. In October of 1982, she was assigned to

the Air Force Plant Representative Office (AFPRO) at Hughes

Aircraft Company, Missile Systems Group, in Tucson, Arizona.

Her duty was as Program Manager for Army and Navy Programs,

including the Navy's Phoenix missile, the Army's Tube-

Launched Optically-Tracked Wire-Guided (TOW) missile and

the Marine Corp's Angle Rate Bombing Set (ARBS). She left

Tucson for the Air Force Institute of Technology School of

Systems and Logistics in May of 1985. She is a member of

the National Contract Managers Association (NCMA) and the

Society of Logistics Engineers (SOLE) as well as Alpha Iota

Delta and Sigma Iota Epsilon honoraries. She has had two

papers published in the AFIT Compendium of Papers for

Systems Production Management,

Permanent address: 11 Beaver Lodge Road

Columbus, Nebraska 68601

80

UNCLASSIFIED
SECURITy CASSIFICATION OF THIS PAGE i ,

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2. SECURITY CLASSIFICATION AUTHORITY 3. OiSTRIBUTIONAVAILABILITY OF REPORT

21. DECL.ASSIFICATION/DOWNGRAOING SCHEDULE Approved for public release;
distribution unlimited.

a PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GLM/ENC/86S-2

6. NAME OF PERFORMING ORGANIZATION G. OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

School of Systems ,IIappliwabi)

and Logistics AFIT/ENC
6c. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433-6583

go6. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (it ppicabe)

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.

11. TITLE (include Security C aification)

See Box 19
12. PERSONAL AUTHOR(S)
Kathleen M. Austin, B.S.B.A., Captain, USAF
13& TYPE OF REPORT 13b, TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day, 15. PAGE COUNT
MS Thesis I FROM TO 1986 September 96

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS tContlnue on reverse ifnece nry and identify by block numberl
FIELD GROUP SUB. GR. Programming Languages, Manufacturing,
09 02 Production, Integrated Systems, Computer Aided
13 08 Design

19. ABSTRACT (Coni nue on rverse if necessary and -denhfy by block number)

Title: APPLYING ADA PROGRAMMING SUPPORT ENVIRONMENT (APSE)
CONCEPTS FOR COMPUTER INTEGRATED MANUFACT"URING
SYSTEMS (CIMS) SOLUTIONS

Thesis Chairman: Patricia K. Lawlis, Major, USAF
Instructor Eyo,.

P
2 111

J Icr R.e2e :h d- c P~ot:." : n:.- iEn

ir Fcrce :IT (Ilute c .E - F

20. OISTRISJUTION/AVAILASILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIEO/UNLMITEO R SAME AS APT. 0 DTIC USERS C UNCLASSIFIED

22& NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL(include Area CodeiPatricia K. Lawlis, Major, USAF 513-255-3098 AFIT/ENC

DID FORM 1473,83 APR EDITION OF I JAN 73 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Los ..

CONCEPTS FOR COMPUTER (U) AIR FORCE INST OF TECH
URIGHT-PATTERSON AFB OH SCHOOL OF SYST K N AUSTIN

UNCLASSIFIED SEP 36 AFIT/GLM/ENC/36S-2 F/G 9/2 NL.I

1.0 I.8

6CROCOPY RESOLUTION TEST CHART
)DINAl BUREAU Of STANDARDS- 1963-A

MEIM

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This thesis compares the concepts of Ada Program-
ming Support Environments (APSE) and Computer Integrated
Manufacturing Systems (CIMS) to see if they are similar
enough to apply APSE concepts for solving CIMS problems.
After establishing a discussion baseline for each of the
concepts, the objectives, design guidelines and pictorial
representations of an APSE and a CIMS are first compared.
Then the two concepts are compared at the database, inter-
faces and toolset level. The major differences between an
APSE and a CIMS are also identified. Finally, after estab-
lishing that similarities do exist between APSE and CIMS
concepts, recommendations are made for applying APSE con-
cepts for CIMS solutions that will contribute to achieving
Air Force as well as U.S. manufacturing goals.

UNCLASSIFIED

.' , I 1 a

